Smell Prediction via Olfactory Receptor Activation Map

Our brain perceives odors by analyzing the various molecules that make up a scent, using sensory detectors known as olfactory receptors. When an odorant molecule interacts with these receptors, it triggers a unique pattern of activation, generating a combinatorial code—often referred to as the "odor code" (Figure 1).
This project is based on the hypothesis that computational models can decipher this odor code. To support the development of these models, inspired by physiological processes, the M2OR database was created. The ORMap project aims to enhance the M2OR database with new functionalities and develop advanced AI models that bridge the different levels of odor representation—molecular, neural, and cognitive.


 

Project Leaders

Sébastien Fiorucci and Jérémie Topin. Nice Institute of Chemistry (ICN), UMR 7272 CNRS Université Côte d’Azur.
 

Project Members

  • Marco Milanesio. Center of Modeling, Simulation and Interactions (MSI), Université Côte d'Azur.
  • Maxence Lalis. ICN, Université Côte d'Azur.
  • Damien Geslin. ICN, Université Côte d'Azur.
Illustration du code combinatoire de la perception olfactive
Illustration du code combinatoire de la perception olfactive
Illustration of the combinatorial code of olfactory perception.